Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis

Abstract
Background, aims: The purpose of the present investigation was to compare the microbial composition of supra and subgingival plaque in 22 periodontally healthy (mean age 32±16 years) and 23 adult periodontitis subjects (mean age 51±14 years).
Methods: A total of 2358 supra and separately subgingival plaque samples were collected from the mesial aspect of all teeth excluding 3rd molars in each subject. Samples were examined for the presence and levels of 40 bacterial taxa using whole genomic DNA probes and checkerboard DNA-DNA hybridization. Clinical assessments including dichotomous measures of gingival redness, bleeding on probing, plaque accumulation and suppuration, as well as duplicate measures of pocket depth and attachment level, were made at 6 sites per tooth. Mean counts (×10^5), % DNA probe count and % sites colonized for each species were determined separately for supra and subgingival samples in each subject and then averaged across subjects in the 2 clinical groups. Significance of differences between healthy and periodontitis subjects was determined using the Mann-Whitney test and adjusted for multiple comparisons.
Results: Mean total DNA probe counts (×10^5, ±SEM) for healthy and periodontitis subjects in supragingival plaque were 72.1±11 and 132±17.5, respectively (p<0.01), and in subgingival plaque 22.1±6.6 and 100.3±18.4, (p<0.001). Porphyromonas gingivalis, Bacteroides forsythus and Treponema denticola could be detected in supragingival plaque samples of both healthy and periodontitis subjects. Actinomyces species were the dominant taxa in both supragingival and subgingival plaque in healthy and periodontitis subjects. 4 Actinomyces species accounted for 63.2% of supragingival and 47.2% of subgingival plaque in healthy subjects and 48.1% and 37.8% in periodontitis subjects respectively. Increased proportions of P. gingivalis, B. forsythus, and species of Prevotella, Fusobacterium, Campylobacter and Treponema were detected subgingivally in the periodontitis subjects. P. gingivalis, B. forsythus and T. denticola were significantly more prevalent in both supra- and subgingival plaque samples from periodontitis subjects.
Conclusions: The main differences between supra and subgingival plaque as well as between health and disease were in the proportions and to some extent levels of Actinomyces, “orange” and “red” complex species.

Key words: microbiology; periodontal health; periodontal disease; supragingival plaque; subgingival plaque; periodontal pathogens; bacteria; DNA probes

Accepted for publication 15 October 1999
and periodontitis subjects was performed using DNA probes and the checkerboard technique (Haffajee et al. 1998). The results indicated that the levels of *P. gingivalis*, *B. forsythus*, *Treponema denticola* and *Selenomonas noxia* were significantly elevated in periodontitis subjects, while the prevalence and levels of the other 36 subgingival taxa evaluated did not differ significantly among the three subject groups. These studies and others (Dahlén et al. 1992, Dahlén et al. 1995, Tanner et al. 1996, Ali et al. 1997) indicated that similar species may be found in subgingival plaque samples taken from periodontally healthy and diseased subjects, although the proportions and levels of specific species differed quite markedly.

Periodontal pathogens can be detected in supragingival plaque and in healthy subjects. Gmür & Guggenheim (1994) used monoclonal antibodies to detect specific species in supragingival plaque samples of 21 periodontally healthy trainee dental hygienists. They found that the prevalence of *A. actinomycetemcomitans*, *B. forsythus*, *Campylobacter rectus* and *Prevotella nigrescens* was 33%, 48%, 43% and 100% respectively. However, the detected cell numbers were generally <1% of the sampled microbiota. Other investigators have also detected *A. actinomycetemcomitans*, *B. forsythus* and *C. rectus* in supragingival plaque samples taken from periodontally healthy sites (Lai et al. 1987, 1992, Gmür et al. 1989, Asikainen et al. 1991, Zimmer et al. 1991). These data indicate that suspected periodontal pathogens occur at a subset of supra and subgingival sites and in healthy subjects, albeit at low numbers and in low proportions. However, existing data do not provide a clear picture of other species in the oral microbiota or the relationships among species at supra and subgingival sites of healthy and periodontitis subjects.

Material and Methods

Subject population

22 periodontally healthy subjects (mean age 32±16 years) and 23 subjects with adult periodontitis (mean age 51±14 years), were selected for the study. Healthy subjects had at least 24 teeth and no sites with pocket depth or attachment level measurements greater than 4 mm. However, subjects in this group could exhibit gingival inflammation. The periodontitis subjects had ≥20 teeth and at least 4 sites with pocket depth >4 mm and/or 4 sites with

<table>
<thead>
<tr>
<th>Table 1. Mean baseline (±SD) clinical characteristics of the subject groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) **</td>
</tr>
<tr>
<td>Number of missing teeth*</td>
</tr>
<tr>
<td>% males</td>
</tr>
<tr>
<td>Mean pocket depth (mm) **</td>
</tr>
<tr>
<td>Mean attachment level (mm) **</td>
</tr>
<tr>
<td>% sites with:</td>
</tr>
<tr>
<td>plaque</td>
</tr>
<tr>
<td>gingival erythema*</td>
</tr>
<tr>
<td>bleeding on probing*</td>
</tr>
<tr>
<td>suppuration*</td>
</tr>
</tbody>
</table>

Significantly different at * p<0.05, ** p<0.01, *** p<0.001; Mann-Whitney test.

Table 2. Strains employed for the development of DNA probes

<table>
<thead>
<tr>
<th>Actinomyces species</th>
<th>“Orange” complex</th>
<th>Other species and new DNA probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinomyces gerencseriae</td>
<td>Campylobacter gracilis</td>
<td>Eubacterium saburreum</td>
</tr>
<tr>
<td>Actinomyces israelii</td>
<td>Campylobacter rectus</td>
<td>Gemella morbillorum</td>
</tr>
<tr>
<td>Actinomyces naeslundii genospecies 1</td>
<td>Campylobacter showae</td>
<td>Leptotrichia buccalis</td>
</tr>
<tr>
<td>Actinomyces naeslundii genospecies 2</td>
<td>Eubacterium nodatum</td>
<td>Neisseria mucosa</td>
</tr>
<tr>
<td>“Purple” complex</td>
<td>Fusobacterium nucleatum ss nucleatum</td>
<td>Prevotella melaninogenica</td>
</tr>
<tr>
<td>Actinomyces odontolyticus</td>
<td>Fusobacterium nucleatum ss polymorphum</td>
<td>Propionibacterium acnes**</td>
</tr>
<tr>
<td>Veillonella parvula</td>
<td>Fusobacterium nucleatum ss vincentii</td>
<td>Selenomonas noxia</td>
</tr>
<tr>
<td>“Yellow” complex</td>
<td>Fusobacterium periodonticum</td>
<td>Streptococcus anginosus</td>
</tr>
<tr>
<td>Streptococcus gordoni</td>
<td>Peptostreptococcus micros</td>
<td>Treponema socranski S1</td>
</tr>
</tbody>
</table>
| Streptococcus intermedius | Prevotella intermedia | *
| Streptococcus mitis | Prevotella nigrescens | *
| Streptococcus oralis | Streptococcus constellatus | *
| Streptococcus sanguis | *Treponema denticola* | B1 |
| “Green” complex | *Actinobacillus actinomycetemcomitans* | *Porphyromonas gingivalis* |
| Actinobacillus actinomycetemcomitans* | *Bacteroides forsythus* | 43037 |
| Capnocytophaga gingivalis | *Porphyromonas gingivalis* | 33277 |
| Capnocytophaga ochracea | *Treponema denticola* | 14 |
| Capnocytophaga spathigera | *Treponema denticola* B1 |
| Eikenella corroden | *Treponema denticola* | 14 |

All strains were obtained from the American Type Culture Collection (ATCC) except *Treponema denticola* B1 and *Treponema socranski* S1 which were obtained from the Forsyth Institute. Microbial “complexes” were described by Socransky et al. (1998).

* ATCC strains 43718 and 29523; ** ATCC strains 11827 and 11828.
attachment loss >4 mm. Exclusion criteria included pregnancy, lactation, periodontal or antibiotic therapy in the previous 3 months, any systemic condition which could influence the course of periodontal disease or which would require pre-medication for monitoring procedures. No subjects with localized juvenile periodontitis, rapidly progressive periodontitis or acute necrotizing ulcerative gingivitis were included in the study.

Clinical monitoring

Subjects were screened for suitability and, if accepted, signed informed consent. Clinical measurements were taken at 6 sites per tooth (mesiobuccal, buccal, distobuccal, distolingual, lingual and mesiolingual) at all teeth excluding third molars (a maximum of 168 sites per subject) as previously described (Haffajee et al. 1983). Clinical assessment included plaque accumulation (0/1), overt gingivitis (0/1), bleeding on probing (0/1), suppuration (0/1), probing pocket depth and probing attachment level. Pocket depth and attachment level measurements were taken twice by the same examiner and the average of the pair of measurements was used for analysis. Such measurements were recorded to the nearest millimeter using a North Carolina periodontal probe (Hu-Friedy, Chicago, IL). The baseline clinical features of the 45 subjects are presented in Table 1.

Microbial assessment of plaque samples

2358 samples of supra and subgingival plaque were collected from up to 28 supra and 28 subgingival sites from both the healthy and periodontitis subjects, and individually analyzed by checkerboard DNA-DNA hybridization (Socransky et al. 1994). After drying and isolation with cotton rolls, supragingival plaque was sampled from the mesio-buccal aspect of each tooth excluding third molars, using sterile Gracey curettes. Each plaque sample was placed in individual tubes containing 150 μl of TE buffer (pH 7.6). After removal of the supragingival sample and any remaining supragingival plaque, subgingival plaque samples were taken from the same sites (i.e., the mesio-buccal aspect of each tooth) using sterile Gracey curettes and placed in similar individual tubes. 100 μl of 0.5 M NaOH were added to each tube and the samples were dispersed in a vortex mixer. Samples were boiled for 10 min and neutralized using 800 μl of 5 M ammonium acetate. The released DNA was then placed into the extended slots of a Minislot-30 apparatus (Immunetics, Cambridge MA), concentrated onto a 15×15 cm positively charged nylon membrane (Boehringer Mannheim, Indianapolis, IN) and fixed to the membrane by cross-linking under ultraviolet light followed by baking at

Fig. 1. Bi-lateral bar chart of the mean prevalence (% of sites colonized, ±SEM) of individual species in supragingival plaque samples from 22 periodontally healthy and 23 periodontitis subjects. Methods of computation and data analysis were as described in Fig. 1.

Fig. 2. Bi-lateral bar chart of the mean prevalence (% of sites colonized, ±SEM) of individual species in subgingival plaque samples from 22 periodontally healthy and 23 periodontitis subjects.
120°C for 20 min. Two lanes on each membrane had standards that consisted of a mixture at 10^5 and 10^6 cells of each bacterial species tested.

A list of the 40 bacterial strains employed for the preparation of DNA probes is presented in Table 2. All strains were purchased as lyophilized stocks from the American Type Culture Collection (ATCC, Rockville, MD) (exceptions are noted in the Table). The preparation of DNA probes and evaluation of the plaque samples using checkerboard DNA-DNA hybridization were described in detail previously (Ximénez-Fyvie et al. 2000).

Data analysis

Microbiological data available for each subject were the counts of each of the 40 test species from up to 28 supragingival and, separately, up to 28 subgingival plaque samples per subject. The analyses compared microbial data expressed as counts ×10^5 (levels), % DNA probe count (proportion) and % sites colonized (prevalence). In order to compare the counts of each of the bacterial species, the data were expressed as counts ×10^5 at each site, averaged within a subject and then averaged across subjects for supra and subgingival counts separately. A similar fashion, the % DNA probe count and prevalence of each species were computed at each site, averaged across sites within each subject and then across subjects. Analyses compared supragingival plaque composition in healthy and diseased subjects as well as comparisons of subgingival plaque composition in the 2 clinical groups. Significance of differences between groups for each species were sought using the Mann-Whitney test. Adjustments were made for multiple comparisons as described by Socransky et al. (1991).

Results

Prevalence

Mean prevalence (% of sites colonized) of the 40 test species in supra and subgingival plaque samples from healthy and periodontitis subjects is summarized in Figs. 1, 2, respectively. Members of the genus *Actinomyces* and *Leptotrichia buccalis* were detected in a higher % of both supra and subgingival sites than any other species in both subject populations. 6 species were significantly more prevalent in supragingival plaque...
samples from periodontitis subjects than periodontally healthy subjects (Fig. 1). These included the “red” complex species, B. forsythus, P. gingivalis and T. denticola as well as Prevotella intermedia, P. nigrescens and S. noxia. The difference in prevalence of species between periodontally healthy and diseased subjects was more striking for the subgingival plaque samples (Fig. 2). 20 of 40 species were significantly more prevalent in periodontitis subjects than in subjects who were periodontally healthy even after adjusting for multiple comparisons. Many of these species were suspected periodontal pathogens including the “red” complex species, A. actinomyctecomitans and S. noxia.

Figs. 1, 2 fail to show the difference in prevalence of individual species in different subjects. Fig. 3 presents 6 percentile plots that indicate the prevalence of P. gingivalis, Actinomyces naeslundii genospecies 2 and L. buccalis in both supra and subgingival plaque samples for each subject. Fig. 3 indicates that P. gingivalis was not detected in 41% and 45% of supra and subgingival plaque samples respectively of periodontally healthy subjects (Fig. 3, open circles, left panels). In contrast, 50% of periodontitis subjects harbored P. gingivalis at more than 20% of sites both supra and subgingivally (Fig. 3, black circles, left panels). The distributions for P. gingivalis were significantly different between health and disease. The other 2 “red” complex species, B. forsythus and T. denticola as well as other suspected periodontal pathogens showed similar distributions. A. naeslundii genospecies 2 was far more prevalent than P. gingivalis, particularly in supragingival plaque. All periodontitis subjects exhibited this species in >60% sites with median values approaching 90%. This species was significantly more prevalent in the subgingival samples of periodontitis subjects than periodontally healthy subjects. The distributions of L. buccalis were similar in both health and disease for the supra and subgingival plaque samples. More prevalent species, such as other members of the genus Actinomyces exhibited patterns of colonization similar to A. naeslundii genospecies 2 or L. buccalis.

Mean counts

Mean total DNA probe counts ($\times 10^5$, ±SEM) in supra and subgingival plaque samples were 72.1 ± 11.1 and 22.1 ± 6.6 for the 22 healthy subjects (n sites=594, n samples=1188) and 132.7 ± 17.5 and 100.3 ± 18.4 for the 23 periodontitis subjects (n sites=585, n samples=1170). Both supra and subgingival plaque samples from healthy subjects presented significantly lower total bacterial counts than from periodontitis subjects ($p<0.01$ supragingival, $p<0.001$ subgingival).

Mean counts of the 40 individual bacterial species in supra and subgingi-
Microbiota in health and periodontitis

Fig. 6. Bi-lateral bar chart of the mean % DNA probe count (±SEM) comprised by each species in supragingival plaque samples from 22 periodontally healthy and 23 periodontitis subjects. The % DNA probe count was computed for each species in each supragingival plaque sample, averaged within a subject and then averaged across subjects in the 2 clinical groups. The data are ordered on the basis of the proportions in the periodontally healthy subjects. The significance of differences between periodontally healthy and periodontitis subjects was tested using the Mann Whitney test. * \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \) after adjusting for multiple comparisons.

Fig. 7. Bi-lateral bar chart of the mean % DNA probe count (±SEM) comprised by each species in subgingival plaque samples from 22 periodontally healthy and 23 periodontitis subjects. Methods of computation and data analysis were as described in Fig. 6.

Proportions

The proportions (mean % DNA probe count) of the 40 test species in supragingival plaque samples compared with healthy subjects with the exception of *A. gerencseriae* and *A. naeslundii* genospecies 1 and 2, *Actinomyces odontolyticus*, *Eubacterium nodatum* and *Streptococcus anginosus* (Fig. 5). No species were detected in significantly higher counts in either supragingival plaque samples from healthy subjects when compared with the corresponding samples from the periodontitis subjects.

Species were grouped according to the complexes described by Socransky et al. (1998) (Table 2). The proportions these groups comprised in supragingival plaque samples from healthy and periodontitis subjects are presented in Fig. 8. The areas of the pies were adjusted to reflect the mean total counts at each of the 4 sample locations. As described previously, the highest mean total counts were for the supragingival plaque samples from the periodontitis subjects while the lowest...
mean total counts were for the subgingival samples from the periodontally healthy individuals. *Actinomyces* species represented the highest proportion of organisms in both supra and subgingival plaque from healthy (63.2% supragingival, 47.2% subgingival) and periodontitis subjects (48.1% supragingival, 37.8% subgingival). The microbiota of healthy and diseased subjects differed primarily in that periodontitis subjects exhibited a higher proportion of “red” and “orange” complex species and a lower proportion of *Actinomyces* species in both supra and subgingival plaque than healthy subjects. The increase in proportions of “red” and “orange” complex species from either health to disease or supragingival to subgingival appeared to occur at the expense of the *Actinomyces* species. The relationship between “red” complex and *Actinomyces* species is demonstrated in Fig. 9. The mean ratio of *Actinomyces* species to “red” complex species decreased from 117:1 in supragingival plaque samples of healthy subjects to 5.4:1 in subgingival plaque samples from periodontitis subjects.

Discussion

The present investigation examined supragingival and subgingival plaque samples from periodontally healthy and periodontitis subjects in order to provide a more comprehensive picture of the microbial profiles in these different sample locations. This was made possible by the use of the checkerboard DNA-DNA hybridization technique which permitted the examination of 2358 plaque samples in 22 periodontally healthy and 23 periodontitis subjects for their content of 40 bacterial taxa. In addition, the recognition that bacterial species form distinct associations in dental plaque facilitated the orderly description of these ecosystems.

There was variability in the composition of the supra and subgingival plaque samples from site to site and subject to subject. However, on average, certain patterns of colonization could be discerned. All 40 taxa could be detected in some samples of supra and subgingival plaque obtained from both periodontally healthy and diseased subjects. However, there were differences in mean levels, prevalence and proportion among the 4 sample locations (supra versus sub, health versus disease). The greatest numbers of organisms were detected in the supragingival plaque of the periodontitis subjects, while the lowest numbers were detected in the subgingival samples from the periodontally healthy subjects. *Actinomyces* species appeared to dominate all 4 sample locations, although proportions of these organisms were highest in supragingival samples from healthy subjects (63.2%) and lowest subgingivally in periodontitis subjects (37.8%). The decrease in the proportion of the *Actinomyces* species occurred as a result of an increase in the proportion of “red” and “orange” complex species. These 2 complexes were higher in subgingival than supragingival sites and higher in disease than health. Thus, the combined proportion of “red” and “orange” complex species was 14.3% in supragingival health, 20.3% in supragingival disease, 24.8% in subgingival health and 34.6% in subgingival disease.

The most striking difference between
periodontal health and disease was in the mean counts of the individual species. For example, in the supragingival samples, over half of the species were found at significantly higher mean counts in the periodontitis subjects compared with the healthy subjects. The difference between health and disease was even more pronounced for the subgingival plaque samples, where mean counts of 34 of the test species were significantly elevated in plaque samples from the periodontitis subjects. One might speculate that the reason for the differences in mean counts for the supragingival plaque samples was a higher level of inflammation and increased gingival crevice fluid flow in the periodontitis subjects. Further, spread of organisms from the subgingival to the supragingival environment of the periodontitis subjects might have contributed to the increased counts of species supragingivally in these subjects. The difference in mean counts of species subgingivally between health and disease was expected, since the subgingival environment in the 2 groups of subjects is quite different. The periodontitis subjects had deeper periodontal pockets which not only provided a larger area for the colonization of species, but a physically different habitat. Nonetheless, mean counts of 25 of 40 taxa were significantly higher in the subgingival plaque samples of the periodontitis subjects, after adjusting for 40 comparisons, when only pockets ≤3 mm were compared in the 2 subjects groups (data not shown). This finding implies that pocket depth is not the sole determinant of differences in subgingival microbial composition between periodontally healthy and periodontitis subjects.

A previous publication compared the microbial composition of supragingival plaque and subgingival plaque in periodontitis subjects (Ximénez-Fyvie et al. 2000). It was found that many suspected periodontal pathogens could be detected in supragingival plaque samples. The current investigation extend these findings by demonstrating that periodontal pathogens could be detected in both supragingival and subgingival plaque samples from periodontally healthy individuals. As pointed out earlier, detection of periodontal pathogens in supragingival plaque samples is not uncommon (Gmürr & Guggenheim 1994). Periodontal pathogens have also been frequently detected in periodontally healthy subjects (Frisken et al. 1987, Lai et al. 1987, 1992, Mombelli et al. 1990, McNabb et al. 1992, Gmürr & Guggenheim 1994, Ali et al. 1997). Detection of pathogenic species in healthy subjects prior to disease and in supragingival plaque samples has important implications in the prevention and treatment of periodontal infections (Ximénez-Fyvie et al. 2000).

The data of the present investigation provided few surprises. The microbiota of all sample locations was, on average, dominated by the *Actinomyces* species, a greater proportion of “red” and “orange” complex species were observed in samples from diseased individuals and subgingival sites, periodontal pathogens were detected both in healthy subjects and in supragingival plaque samples and total counts of bacterial species were highest in supragingival samples from periodontitis subjects and lowest in subgingival plaque samples from periodontally healthy subjects. These and the detailed findings presented in the Figs. help to bring into focus the nature and composition of plaque samples from ecologically different intra-oral locations. As expected, certain members of the microbiota were common in bacterial plaque whether the samples were obtained from supra or subgingival sites in diseased or healthy subjects. This core group of organisms was typically built around the *Actinomyces*, but members of the genera *Streptococcus*, *Veillonella*, *Capnocytophaga*, *Eikenella*, *Leptotrichia* and *Neisseria* also appeared to play prominent roles. Members of the “orange” complex such as the *Fusobacterium*, *Prevotella* and *Campylobacter* species also appeared to be regular inhabitants of plaque particularly when gingival inflammation was present. Members of the “red” complex such as *B. forsythus*, *P. gingivalis* and *T. denticola* could be detected at a small proportion of sites at low levels in samples from supra and subgingival plaque in healthy subjects. These species were detected in higher levels and proportions in periodontally diseased subjects both above and below the gingival margin. It seems likely that periodontal pathogens colonize the supragingival plaque of periodontally healthy individuals for considerable periods of time prior to disease initiation. The development of gingival inflammation may foster proliferation of these organisms. Further, enlargement of the gingival tissues might lead to location of these species below the gingival margin, a habitat furthering their proliferation. The lateral wall of the periodontal pocket can provide a site of attachment and a source of nutrients. In addition, the organisms may benefit by entry into or between the epithelial
cells lining the periodontal pocket (Fiv-
es-Taylor et al. 1999, Holt et al. 1999). The improved environment may foster multiplication of these species which could account for the higher numbers of these organisms detected in disease.

The data obtained from the supra and subgingival plaque samples from the periodontally healthy subjects indicated that while there was a shift in the microbiota during disease, the shift was not so radical that “re-adjustment” back to health could not be reasonably accomplished in the majority of periodontitis subjects. Clearly, decreasing the proportion of “red” and “orange” complex species and decreasing the numbers of organisms in the subgingival space should be desired endpoints of infection control in periodontitis subjects (Fig. 8). The methods to achieve this goal are largely but not entirely in our hands.

Acknowledgments

This work was supported in part by research grants DE-12108, DE-10977 and DE-04881 from the National Institute of Dental and Craniofacial Research and by DGAPA, National Autonomous University of Mexico (UNAM).

Zusammenfassung

Vergleich der Mikroflora der supra- und subgingivalen Plaque im gesunden Zustand und bei Parodontitis

schen-DNA-Sonde und der Schachbrett-DNA-DNA-Hybridisierung untersucht. An 6 Stellen pro Zahn wurden klinische Befunde einschließlich dichotomer Messung der Gingivärstung, der Sondierungsblutung, der Plaqueakumulation und Suppuration als auch Zweifachmessung von Taschentiefe und Abtachmentsniveau durchgeführt. Für jede Per-
son wurde für jede Spezies die mittlere An-
zahl (×105), der Prozentsatz mittels DNA-
Sondenbestimmung und der Prozentsatz der kolonisierten Taschen getrennt nach supra-
und subgingival bestimmt. Die wurden an-
schließend für die 2 klinischen Gruppen Durchschnittswerte gebildet. Mit dem Mann-Whitney-Test der für Mehrfachvergleiche ad-
justiert war wurde die Signifikanz der Unter-
schiede zwischen gesunden und kranken Per-
sonen bestimmt. Die durchschnittliche Ge-
samtkonzentration (×105 ± SEM) betrugen für die supragingivale Plaque 72±11 für Ge-
sunde und 132±17 für Kranken (P<0.01) und entsprechend für die subgingivale Pla-
que 22.1±6.6 bzw. 100.3±18 (P=0.001). Sowohl bei Gesunden als auch bei Parodontitispatienten konnten in den supragingivalen Plaqueproben Porphyromonas gingivalis, Bacteroides forsythus und Treponema denti-
cola nachgewiesen werden. Sowohl bei den Gesunden als auch bei den Kranken waren in der supra- und der subgingivalen Plaque die Actinomyces Spezies die dominierende Taxa. Vier Actinomyces Spezies stellten bei den Gesunden 63.2% der supragingivalen und 47.2% der subgingivalen Plaque. Bei den Parodontitispatienten waren die entsprechenden Prozentsätze 48.1% in der supra- und 37.8% in der subgingivalen Plaque. Supragingi-
portionen und zu einem gewissen Maß der Menge von Actinomyces-“orange”- und -“rot”-Komplex-Spezies.

Résumé

Comparaison de la flore de la plaque dentaire sus- et sous-gingivale en présence de para-
donte sain et de parodontite

Le but de l’étude présente a été de comparer la composition microbienne de la plaque dentaire sus- et sous-gingivale chez 22 pa-
tiens sains âgés de 32±16 ans et 23 adultes avec parodontite âgés de 51±14 ans. Un total de 2358 échantillons séparés de plaque den-
taire sus- et sous-gingivale ont été prélevés de la partie mâche de toutes les dents sauf des dents de sagesse. Les échantillons ont été exa-
minés pour la présence et les teneurs en 40 espèces de bactéries en utilisant les sondes ADN génomiques totales et l’hybridisation ADN-ADN en damier. Les examens clini-
ques comprenaient les mesures dichotomi-
ques de la rouge gingivale, du saignement au sondage, de l’accumulation de la plaque dentaire et de la présence de suppuration ainsi que des mesures supplémentaires de la profon-
deur de poche et des niveaux d’attaque sur 13 de sites par dent. Les comptages moyens ×105, le comptage de la sonde ADN et le % de sites colonisés par chaque espèce ont été déterminés séparément pour les échantillons de pla-
que dentaire sus- et sous-gingivale et mis en moyenne pour tous les sujets dans les deux groupes cliniques. Des différences significative-
tives entre les sujets sains et avec parodontite ont été déterminées en utilisant le test de Mann-Whitney et ajustées pour les compara-
isons multiples. Les comptages par sonde ADN totaux moyens ×105±EC pour les sujets sains et avec parodontite dans la pla-
que sus-gingivale étaient respectivement de 72.1±11 et 132±18 (p<0.001) et pour la pla-
que sous-gingivale de 22.1±7, 100±18 (p<0.001). Le porphyromonas gingivalis, le Bacteroides forsythus et la Treponema denticola pouvaient être détectés dans les échantil-
lons de plaque sus-gingivale des sujets sains et avec parodontite. Les espèces Actinomyces étaient les plus dominantes dans la plaque sus- et sous-gingivale tandis que chez les sujets sains que les sujets avec parodontite 4 espè-
ces Actinomyces apportaient 63% des échan-
tillons de la plaque sus-gingivale et 47% de ceux de la sous-gingivale chez les sujets sains, et 48 et 38% chez ceux avec parodontite. Des proportions augmentées de P. gingivalis, B. forsythus et des espèces de Prevotella, Fusobacterium, Campylobacter et Treponema ont été identifiées en sous-gingival chez les sujets avec parodontite. P. gingivalis, B. forsythus et T. denticola avaient une fréquence globale significativement plus importante tant dans les échantillons de plaque sus- que sous-gin-
 gviale chez les patients avec parodontite. Les différences les plus importantes entre la pla-
que sus- et sous-gingivale ainsi qu’entre les sujets sains et malades étaient dans les pro-
portions et à un certain point dans les te-
neurs en Actinomyces et dans les espèces complexes “orange” et “rouge”.

References

Dahlén, G., Manji, F., Baelum, V. & Fejer-
skov, O. (1992) Putative periodontopatho-
gens in “diseased” and “non-diseased” persons exhibiting poor oral hygiene. Journal of Clinical Periodontology 19, 35–42.

Dahlén, G., Luan, W.-M., Baelum, V., Fejer-
skov, O. & Chen, X. (1995) Periodontopa-

odontopathic microorganisms and their oral habitats in young children. Oral Microbiology and Immunology 2, 60–64.

Gmür, R. & Guggenheim, B. (1994) Inter-
dental supragingival plaque-A natural
Microbiota in health and periodontitis

habitat of *Actinobacillus actinomycetemcomitans*, *Bacteroides forsythus*, *Campylobacter rectus* and *Prevotella nigrescens*. *Journal of Dental Research* 73, 1421–1428.

Address:
Anne D. Haffajee
Department of Periodontology
The Forsyth Institute
140 The Fenway
Boston, MA 02115
USA